
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 329 (2010) 3247–3265
0022-46

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jsvi
Active vibration suppression of multilayered plates integrated
with piezoelectric fiber reinforced composites using an
efficient finite element model
S. Kapuria �, M.Y. Yasin

Department of Applied Mechanics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
a r t i c l e i n f o

Article history:

Received 19 November 2009

Received in revised form

12 February 2010

Accepted 15 February 2010
Handling Editor: L.G. Tham
electroded surfaces of sensors is satisfied exactly and conveniently using a novel
Available online 21 March 2010
0X/$ - see front matter & 2010 Elsevier Ltd. A

016/j.jsv.2010.02.019

responding author. Tel.: +91 11 26591218; fa

ail addresses: kapuria@am.iitd.ac.in (S. Kapur
a b s t r a c t

The active vibration suppression of hybrid composite and fiber metal laminate (FML)

plates integrated with piezoelectric fiber reinforced composite (PFRC) sensors and

actuators is studied for the first time, using an efficient and advanced layerwise plate

theory. Unlike the conventional finite elements, the equipotential condition of

concept of electric node. The effective electromechanical properties of the PFRC laminas

are computed using a coupled three-dimensional iso-field micromechanical model.

Numerical results are presented for both classical constant gain velocity feedback

(CGVF) and optimal control strategies. The instability phenomena in CGVF control with

conventionally collocated actuator–sensor pairs, and its remedy with a truly collocated

arrangement are illustrated. The effect of segmentation of electrodes on the control

response is studied. The segmentation of electrodes leads to a multi-input–multi-output

(MIMO) configuration. The effects of piezoelectric fiber orientation, volume fraction and

dielectric ratio of PFRC on the control response and the actuation/sensing authority are

investigated for cantilever and simply supported plates.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Piezoelectrics have emerged as the most widely used materials for distributed sensors and actuators in smart structures
for active vibration, shape, stability and noise control applications [1]. The advantages of piezoelectric materials over other
smart materials are their easy commercial availability, efficient conversion between electrical and mechanical energy,
relatively linear mechanical and electromechanical behavior (at low fields), large useful bandwidth and ease of integration
into laminated composite structures. However, for large scale structural control applications such as in aerospace and
automotive structures, monolithic piezoelectric actuators and sensors suffer from certain shortcomings with regard to
tailorable directional actuation, robustness against damage during use and handling, ability to cover the entire structure
for distributed sensing and actuation, and conformability to curved shell-type structural members. Recent developments of
piezoelectric fiber reinforced composite (PFRC) materials with high strength, toughness, operating range (�1500 to
2800 V), life (200 million cycles) and conformability to curved surfaces have addressed these concerns [2]. Fiber metal
laminate (FML) consisting of alternating layers of thin metallic sheets and fiber prepregs (aramid, carbon, glass, etc.) is fast
emerging as a new structural material for aerospace and automobile applications in view of its higher specific strength,
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good plasticity, impact resistance, processability, light weight and excellent fatigue properties [3]. The present work deals
with the active vibration control of hybrid composite and FML plate structures integrated with monolithic piezoelectric as
well as PFRC sensors and actuators using an advanced computationally efficient mechanics model.

Analysis and design of smart laminated plate/shell-like structures integrated with distributed piezoelectric sensors and
actuators for active vibration control require a computationally efficient and accurate model for the mechanics of the
hybrid laminate, its efficient numerical implementation for structures and components of arbitrary shape and geometry, a
suitable control theory and appropriate hardware. Most studies on active vibration control hybrid plate-type structures
have been carried out using equivalent single layer (ESL) theories such as the classical theory (CLT), first order shear
deformation theory (FSDT) and third order theory (TOT). These theories assume a global polynomial distribution of the
displacement variables along the thickness direction across all layers, independent of the lay-up and material properties of
the layers, and differ from each other by the degree of the polynomial. Uncoupled CLT [4–6], and FSDT [7] have been
employed for active vibration control studies on hybrid laminated plates, which include the stiffness of the piezoelectric
layers, but do not consider the electric potentials as independent variables (i.e. neglects the two-way electromechanical
coupling). The neglect of full electromechanical coupling in uncoupled theories may cause significant inaccuracy in the
predicted response, particularly for the sensory electric potential whose accuracy is crucial for the closed loop control.
Finite element (FE) models have been developed incorporating the electric potential DOF based on the coupled CLT [8–10],
FSDT [11–15] and TOT [16], for closed loop vibration control of hybrid plates. The ESL theories are computationally very
efficient as the number of primary displacement variables is independent of the number of layers, but they are often
inadequate for predicting accurate response of such hybrid laminated structures having strong electromechanical
inhomogeneities across the thickness. Few studies have been reported using 3D solid elements [17,18] and layerwise
theories (LWTs) [19], which are accurate, but the number of DOF increases proportionally with the number of layers.

In conventional finite elements, the electric DOF are treated as nodal variables [13–16] or elemental variables [9,12].
In such cases, the output signal from the electroded sensor surface is to be computed by averaging the electric DOF of
nodes/elements covering the surface, which is an approximate and cumbersome process in the context of FE. In most cases,
this is not followed and the equipotential condition is violated, making the control results unrealistic.

The performance of an active vibration suppression system strongly depends on the control algorithm. Most vibration
control studies on smart plates employ constant gain velocity feedback (CGVF) control [6,8,9,12,13,16] and linear quadratic
regulator (LQR) control [5,7,10,14,17,19]. In the CGVF control strategy, the stability of the system is guaranteed only when
the actuators and sensors are truly collocated. The LQR algorithm does not require collocated actuator–sensor pairs for
stability, but it requires the measurement of all state variables, which is a difficult proposition. The linear quadratic
Gaussian (LQG) controller circumvents this difficulty, by employing an optimal observer for estimating the state variables
from the measured outputs (sensory voltage in the present case). This controller, which is more realistic, has been applied
to control of smart plates in very few studies, e.g. by Dong et al. [18] and Kumar et al. [15].

No study has been reported so far on the optimal vibration control of hybrid plates integrated with PFRC sensors and
actuators. This work presents a study on the active vibration control of smart laminated plates equipped with electroded
monolithic piezoelectric and PFRC sensors and actuators, using a FE based on the fully coupled efficient layerwise theory
presented recently by Kapuria and Kulkarni [20]. The theory retains the accuracy of LWTs and economy of ESL theories.
The inplane displacements are initially assumed to follow a layerwise linear variation with a global cubic variation in the
thickness direction, but the number of primary variables is subsequently reduced to only five (as in the TOT), by imposing
the conditions of continuity of transverse shear stresses at the layer interfaces and shear tractions on the top and bottom
surfaces. The electric potential is assumed to follow a quadratic variation across the piezoelectric layers. Unlike in the
existing FEs, the equipotential condition of the electroded surface of piezoelectric sensors is enforced accurately and
conveniently by attaching the electric DOF corresponding to the electroded surface to a separate electric node that has no
physical coordinates. The effective electromechanical properties of the PFRC laminas are computed using a coupled 3D
iso-field micromechanical model. A reduced-order state space model is used for designing the control system. Numerical
results are presented for hybrid angle–ply composite and FML plates, using both classical (CGVF) and optimal control
strategies (LQR and LQG). Case studies on CGVF control are performed to show the instability phenomena in closed-loop
response with conventionally collocated actuator–sensor pairs, and a truly collocated arrangement to remove the
instability is illustrated. The effect of segmentation of electrodes on the control response is studied. The segmentation of
electrodes leads to a multi-input–multi-output (MIMO) configuration. The effects of piezoelectric fiber orientation, volume
fraction and dielectric ratio of PFRC on the control response and the actuation/sensing authority are investigated for
cantilever and simply supported plates.
2. Modeling of the piezolaminated plate

2.1. Micromechanics of PFRC

For the PFRC materials used in laminated structures, the piezoelectric fibers are oriented in the plane of structures, while the
poling and the electric field are along the thickness direction, i.e. perpendicular to the fiber (Fig. 1). Bent [21] presented a
micromechanics model based on the coupled iso-field method to predict the effective electromechanical properties of such PFRC
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laminas, considering the uniaxial stress fields [22]. This method was extended to the 3D case by Kapuria and Kumari [23]. In this
method, the effective properties are obtained for representative volume element (RVE) of two possible connectivities for the
piezoelectric fiber and matrix phases: models A and B with material connectivity on x1–x2 and x1–x3 planes, respectively, as shown
in Fig. 2. The strain and the electric field components parallel to the connecting plane of two phases are assumed to be uniform
and the same in both phases (iso-field condition), and iso-stress and iso-electric displacement conditions are assumed to exist
along normal to the connecting plane. For the case of combined model (AB), the material properties of piezoelectric fiber phase in
model B are replaced with the effective properties from model A.

2.2. Efficient layerwise theory

The fully coupled efficient layerwise (zigzag) theory presented by Kapuria and Kulkarni [20] is extended to PFRC
materials for the present study. Consider a hybrid angle–ply composite plate (Fig. 3) with some piezoelectric sensor/
Fig. 1. Schematic representation of PFRC.

Fig. 2. Representative volume elements for iso-field model (p-piezoceramic, m-matrix).

Fig. 3. Geometry of a hybrid plate.
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actuator layers with poling along the thickness direction z. The piezoelectric layers may be of monolithic piezoelectric
materials with class mm2 symmetry or made up of PFRC materials with unidirectional piezoelectric fibers at any arbitrary
angle ak to the x-axis. The effective electromechanical properties of the PFRC laminas are computed using the
micromechanics model described in the preceding section. The piezoelectric layers are electroded at the surfaces in
segments, where equipotential condition exists. The electric potential f is assumed to follow a quadratic variation across
the piezoelectric layers. While the electric potential at the surface will be constant over electroded segment, within the
layer, it will vary in inplane directions (x,y) due to the direct piezoelectric effect. To be able to implement this differential
interpolation in the FE, the piecewise quadratic variation of f is described in terms of surface potentials fj at z¼ zj

f and
internal quadratic component fl

c at z¼ ðzl
fþzlþ1

f Þ=2:

fðx;y;z;tÞ ¼Cj
fðzÞf

j
ðx;y;tÞþCl

cðzÞf
l
cðx;y;tÞ; (1)

where j¼ 1;2; . . . ;nf and l¼ 1;2; . . . ;nf�1, and the summation convention is used for repeated indices j and l. Cj
fðzÞ and

Cl
cðzÞ are the piecewise linear and quadratic functions, respectively, given by

Cj
fðzÞ ¼

0 if rzj�1
f or if zZzjþ1

f

ðz�zj�1
f Þ=ðz

j
f�zj�1

f Þ if zj�1
f ozozj

f

ðzjþ1
f �zÞ=ðzjþ1

f �zj
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fozozjþ1
f

8>>>><
>>>>:

9>>>>=
>>>>;
;

Cl
cðzÞ ¼
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f �zÞðz�zl

fÞ=ðz
lþ1
f �zl

fÞ
2 if zl

frzrzlþ1
f

0 otherwise

( )
: (2)

The transverse displacement w is approximated by accounting for the transverse normal strain due to electric field.
Thus integrating ez ¼w;zC�d33f;z yields

wðx;y;z;tÞ ¼w0ðx;y;tÞ�fC
j

fðzÞf
j
ðx;y;tÞþC

l

cðzÞf
l
cðx;y;tÞg; (3)

where C
j

fðzÞ ¼
R z

0 d33C
j
f;zðzÞdz, C

l

c ¼
R z

0 d33Cl
c;zðzÞdz, dij denotes the piezoelectric strain constants and the overbar signifies

reduced property due to the usual zero transverse normal stress ðszC0Þ assumption.
The inplane displacements ux,uy (for the k th layer) are assumed to follow a global third order variation in z, combined

with a layerwise linear variation:

uðx;y;z;tÞ ¼ ukðx;y;tÞ�zw0d
ðx;y;tÞþzwkðx;y;tÞþz2nðx;y;tÞþz3gðx;y;tÞ; (4)

where

u¼
ux

uy

" #
; w0d

¼
w0;x

w0;y

" #
; uk ¼

ukx

uky

" #
; wk ¼

ckx

cky

" #
; n¼

xx

xy

" #
; g¼

Zx

Zy

" #
; (5)

uk denotes the translation components of the k th layer and wk is related to its shear rotations. n and g are the global
quadratic and cubic terms in z. Thus, uk and wk represent the layerwise linear component of the assumed displacement
field and the remaining terms in Eq. (4) represent the global third order variation. By imposing the conditions of continuity
of transverse shear stresses sð ¼ ½tzx tzy�

TÞ and inplane displacements u at the layer interfaces and of zero shear tractions
(s¼ 0) at the top and bottom surfaces, the unknowns uk;wk;n and g for the L-layered laminate are expressed in terms of
only five variables u0, w0 and w0

uðx;y;z;tÞ ¼ u0ðx;y;tÞ�zw0d
ðx;y;tÞþRk

ðzÞw0ðx;y;tÞ; (6)

where u0 and c0 correspond to the k0th layer through which the mid-plane passes or is at the bottom of. Rk(z) is a 2�2
matrix of layerwise functions of z of the form

Rk
ðzÞ ¼ R̂

k

1þzR̂
k

2þz2R̂3þz3R̂4; (7)

where R̂
k

1; R̂
k

2; R̂3 and R̂4 are 2� 2 coefficient matrices which depend on the material properties and the lay-ups. Their
expressions are available in [24].

2.3. Finite element formulation

The weak variational form of the 2D theory is obtained using the extended Hamilton’s principle for a piezoelectric medium
[25], which can be expressed, using the notation / � � �S¼

PL
k ¼ 1

R z�
k

zþ
k�1

ð� � �Þdz for integration across the thickness, asZ
A
½/rkðduT €uþ €wdwÞþdeTrþdcTs�dETD�DzdEzS�p1

zdwðx;y;z0;tÞ�p2
zdwðx;y;zL;tÞþDzðx;y;z0;tÞdf

1

�Dzðx;y;zL;tÞdf
nf �dA�

Z
GL

/sndunþtnsdusþtnzdwþDndfSds¼ 0 (8)
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8 du0; dw0; dc0; df
l
c; and dfj, where A denotes the mid-plane surface area of the plate and GL is the boundary curve of the

midplane of the plate with normal n and tangent s. r; e; s and c denote the inplane stress, inplane strain, transverse shear stress
and transverse shear strain components, respectively, and E and D denote the inplane electric field and electric displacement
components, respectively, which are given by

r¼

sx

sy

txy

2
64

3
75; s¼

tzx

tyz

" #
; e¼

ex

ey

gxy

2
64

3
75; c¼

gzx

gyz

" #
; E¼

Ex

Ey

" #
; D¼

Dx

Dy

" #
; (9)

Ez and Dz denote the transverse electric field and transverse electric displacement, respectively. pz
1 and pz

2 are normal tractions
on the bottom and top surfaces, and rk denotes the material mass density of the k th layer. Using the assumption szC0, the
linear constitutive equations relating the stresses r; s and electric displacements D, Dz to the strains e; c and electric field
components E, Ez are obtained as

r¼Q e�eT
3Ez; s¼ Q̂ c�êE; D¼ ê

T
cþĝE; Dz ¼ e3eþg33Ez; (10)

where Q ;e;g are the reduced elastic stiffnesses, piezoelectric stress constants and electric permittivities.
A quadrilateral plate element (Fig. 4) with four physical nodes and one electric node is used for the finite element

discretization. Each physical node (node with physical coordinates) has seven mechanical DOF, namely,
u0x

;u0y
;w0;w0;x;w0;x;c0x

; and c0y
, and nf�1 electric DOF, fl

c . Thus, the electric potential variables fl
c can vary along x,y

directions. To impose the equipotential condition over all elements covering an electroded segment, the surface potentials
fj associated with the equipotential surface (or set of equipotential surfaces across the cross-section) are attached to an
electric node p. The electric node does not have any physical coordinates and has nf DOF. This concept not only eliminates
the need of imposing the equality constraints on the electric DOF for equipotential condition, but also results in significant
reduction in the number of electric DOF.

As the highest derivatives of u0x
;u0y

;c0x
;c0y

and fl
c appearing in the variational Eq. (8) are of first order, these are

interpolated using C0-continuous bilinear Lagrange interpolation functions. The presence of the second derivative of w0 in the
variational equation indicates that its interpolation function should have C1 continuity at the element boundary, which is
difficult to achieve for a quadrilateral element. This difficulty is circumvented by using the improved discrete Kirchhoff
constraint approach [26]. In this approach, w0,x and w0,y are replaced by rotation variables y0x

and y0y
, which then require only

C0 continuity. w0 and y0x
; y0y

are interpolated independently, but the two are subsequently related by imposing the constraints
y0i ¼w0;i at discrete points on the element boundary as well as in the interior. The implementation enforces complete
compatibility of the deflection field along the element sides [27]. For the purpose of computing consistent mass matrix and the
load vector for the distributed transverse load, w0 is interpolated assuming a bicubic function. The element mass matrix,
element stiffness matrix and load vector for distributed transverse load are obtained from the variational Eq. (8).

At actuated surfaces (closed circuit condition), electric potentials have known prescribed values. At the sensory surfaces
under open circuit condition, the electric loads are known (zero electric charge, i.e.

R
Ae

Dz dx dy ¼ 0, Ae being the area of
electrode), but the electric potentials are unknown. The system vector U is partitioned into vectors of mechanical
displacements U , unknown voltages Us and known actuation voltages Ua. The equation of motion is accordingly
partitioned and arranged as

Muu 0 0

0 0 0

0 0 0

2
64

3
75

€U
€Us

€Ua

8>><
>>:

9>>=
>>;þ

Kuu Kus Kua

Ksu Kss Ksa

Kau Kas Kaa

2
64

3
75

U

Us

Ua

8><
>:

9>=
>;¼

P

Q s

Q a

8><
>:

9>=
>;: (11)

When the actuator and sensor layers do not have any common electroded surface, Ksa is a null matrix. In case there is a
common interface, the electric potential at the interface is considered as grounded. In both the cases, KsaUa ¼ 0. Also at the
sensor surfaces, the applied electric charge is zero, Qs=0. Considering these null matrices, Eq. (11) yields the output
potentials as

Us ¼�ðK
ss
Þ
�1KsuU: (12)
Fig. 4. The quadrilateral element with electric node.
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Substituting Eq. (12) into Eq. (11) and introducing Rayleigh damping with damping matrix Cuu
¼ a1Muu

þa2Kuu yields

Muu €UþCuu _UþK
uu

U ¼ P�KuaUa; (13)

where K
uu
¼ ½Kuu

�Kus
ðKss
Þ
�1Ksu

�.

3. Active vibration control

3.1. Reduced order model in state space form

The finite element discretization requires a large number of DOF for accurate modeling. However, in numerical
simulation of closed loop response using advanced control algorithms, a reduced order model is desired. Assuming that the
lower modes, which are the most excitable ones due to lower associated energy, dominate the global response of the
system, a truncated modal matrix w for the first m modes can be assumed to span the response vector U as

U ¼
Xm
i ¼ 1

wiẐ i ¼wg; (14)

where W¼ ½W1 W2 � � � Wm� and g¼ ½Ẑ1 Ẑ2 � � � Ẑm�
T
m�1 is the modal coordinates vector. Using transformation (14), the

equation of motion (13) can be transformed to the reduced modal space as

€gðtÞþK _gðtÞþXgðtÞ ¼ ~PðtÞ�K
ua

Ua; (15)

where K¼WTCuuW and X¼WTK
ua

W are diagonal matrices with generic terms 2xioi and o2
i , respectively, where xi is the

modal damping ratio and oi is the undamped natural frequency of the i th mode, and

~P ¼WTP; K
ua
¼WTKua: (16)

Considering that all unknown potentials may not be measured, the sensor output vector Um is obtained as

Um ¼ CmUs; (17)

where Cm is the sensor location matrix given by Cij ¼ dmij
for i=1, y,nm where potentials at nm number of sensors mi are

measured. The open-loop system represented by Eqs. (15), (12) and (17) can be represented in state space form, by
introducing state variables XðtÞ ¼ colðg; _gÞ; as

_XðtÞ ¼AXðtÞþBuuuðtÞþBfufðtÞ;

YðtÞ ¼ CXðtÞ; (18)

where A is the system state matrix, Bu and Bf are the mechanical and electrical input matrices, C is the output matrix,
uu(t) and ufðtÞ are mechanical disturbances and electrical control input vectors, respectively, and Y(t) is the output vector,
given by

A¼
0 I

�X �K

� �
; Bu ¼

0

WT

� �
; Bf ¼

0

�WTKua

� �
; uuðtÞ ¼ PðtÞ;

C¼
�Cm½K

ss
��1KsuW 0

0 �dcCm½K
ss
��1KsuW

" #
; uf ¼UaðtÞ; YðtÞ ¼ colðUm; dc

_UmÞ; (19)

where dc = 0 or 1 depending upon whether the time derivative of sensory voltage is measured or not.

3.2. Control algorithms

In CGVF control, the control input voltage is defined as

ufðtÞ ¼ �GYðtÞ; (20)

with G=[0 Gv], where Gv is the velocity gain matrix. For a set of actuator–sensor pairs, it is a diagonal matrix. Substituting
Eq. (20) into Eq. (18) yields

_XðtÞ ¼ ðA�BfGCÞXðtÞþBuuuðtÞ;

BfGC¼
0 0

0 Ka

" #
with Ka ¼WTKuaGvCm½K

ss
��1KsuW: (21)

It can be seen that the gain matrix G controls the closed-loop system through the modification of the damping (known
as active damping) of the system and consequently the closed-loop poles. The piezoelectric coupling matrix, Kau and Ksu for
actuators and sensors, respectively, are generally not equal because of bending–stretching coupling of the actuators and
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sensors. For a pair of actuator and sensor layers of the same thickness and symmetrically placed about the midplane,
the membrane stiffnesses are equal but of opposite sign. In such cases, the active damping matrix Ka is not symmetric
unlike the passive damping matrix K in Eq. (19), and it may cause instability in the closed-loop response. For truly
collocated sensors and actuators, Ka is symmetric for which the velocity feedback is guaranteed to yield asymptotic
stability of the response.

In LQR optimal control scheme [28], the control gain for a full state feedback is determined by minimizing a quadratic
performance measure or cost function of the following form, which proportional to the system’s vibration response
measured through output Y(t) and to the control effort uf

J¼

Z 1
0
½YT
ðtÞQ Y YðtÞþuT

fðtÞRufðtÞ�dt: (22)

QY and R are the output and control input weighing matrices, which should be real symmetric positive definite. Larger
elements in Qy means higher priority on the vibration suppression ability, whereas larger values for elements of R means
greater interest in reducing the control effort. For a steady state LQR controller, the optimal gain matrix G [Eq. (20)] is
obtained as

G¼�½R��1BT
fP; (23)

where P is the solution of the steady state matrix Ricatti equation

ATPþPA�PBfR�1BT
fPþCTQ Y C¼ 0: (24)

Eq. (20) for control input demands the knowledge of the full state vector X. If the output matrix C is square and
non-singular, X can be readily obtained as X=C�1Y. However, if X cannot be directly obtained from Y, it will be necessary
to estimate the full state vector from the output vector. One such state estimator or observer is the Kalman–Bucy filter. It is
optimal state observer for a system contaminated with measurement and plant (system) noise. In presence of a plant noise
uW and a measurement noise uV, the state Eq. (18) can be rewritten as

_XðtÞ ¼AXðtÞþBuuuðtÞþBfufðtÞþBwuW ðtÞ;

YðtÞ ¼ CXðtÞþuV ðtÞ; (25)

where Bw is the plant noise input matrix. The plant noise uW can be regarded as including actuator noise and/or any
external random disturbance. uW and uV are assumed to be uncorrelated white noise processes with positive definite
intensities W(t) and V(t), respectively, so that the correlation matrices are given by

E½uW ðtÞu
T
W ðtÞ� ¼Wdðt�tÞ;

E½uV ðtÞu
T
V ðtÞ� ¼Vdðt�tÞ; (26)

where E denotes the expectation operator. An estimate X̂ of the state vector X can be obtained by introducing in Eq. (18) an
additional term of the form ‘‘gain multiplied by output error’’

_̂
X ðtÞ ¼ AX̂ðtÞþBuuuðtÞþBfufðtÞþL½YðtÞ�CX̂ðtÞ�; (27)

where L is a 2m� 2nm observer gain matrix. The actual state X in the feedback control law given by Eq. (20) is now
replaced by the estimated state X̂

ufðtÞ ¼�GX̂ðtÞ: (28)

An optimal solution L* of the observer gain matrix L in Eq. (27) which minimizes the mean square value E½eT e� of the
steady state estimation error, e¼X�X̂, is obtained as

L� ¼ �MCTV�1; (29)

where M is the covariance matrix of the steady state error e which is given by the solution of the following Riccati
equation:

AMþMAT
þBwWBT

w�MCTV�1CM¼ 0: (30)

The combined closed-loop dynamic system with the controller and observer can be written using Eqs. (25) and (27)

_X

_e

" #
¼

A�BfG BfG

0 A�L�C

� �
X

e

� �
þ

Bu

0

� �
uuþ

Bw 0

Bw �L�

" #
uW

uV

" #
: (31)

This control philosophy combining LQR with steady state Kalman–Bucy filter is known as the linear quadratic Gaussian
(LQG) control, based on the fact that the plant and measurement noise are Gaussian. The solution of Eqs. (24), (29)–(31) are
obtained using MATLAB functions.
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4. Numerical results

4.1. Validation

To validate the present formulation and the developed code, a cantilever hybrid composite plate (0.2 m�0.2 m)
analyzed in the literature [13] is studied. The stacking sequence is mentioned from bottom to top. The plate consists of a
four-layer angle–ply (�451/451/�451/451) T300/976 graphite–epoxy (Gr/Ep) composite substrate with two outer
piezoelectric layers of PZT G1195N. The thickness of each composite layer is 0.25 mm and that of each piezoelectric
layer is 0.1 mm. The material properties are listed Table 1. The plate is modeled with 15�15 elements, all attached to a
single electric node ensuring equipotential condition of the top and bottom piezoelectric surfaces. The interfaces between
the piezoelectric layers and the elastic substrate are grounded. For static analysis, the plate is subjected to a uniformly
distributed load, pz

2 = �100 N m�2 and actuation voltages of equal magnitude applied to the top and bottom piezoelectric
surfaces (f1

¼fnf ¼f0). The centreline deflection w (y=0.1 m, z=0) of the transversely loaded plate under actuation
voltages f0 ¼ 0 and 50 V is plotted in Fig. 5 and compared with the results of Liu et al. [13], obtained using FSDT employing
with the radial point interpolation method (RPIM). The two results agree very well. Next, the active vibration control of the
cantilever plate vibrating due to initial disturbance of first mode is considered. The passive damping is taken as 0.8 percent
for all modes. In this case, the top piezoelectric layer acts as an actuator and the bottom layer as a sensor. The reduced
order model is obtained with first six modes. The closed-loop tip deflection, w(0.2, 0.1, 0), under CGVF control
with different values of gain is plotted in Fig. 6, which compares well with the envelope of the response obtained by
Liu et al. [13].
4.2. Control of hybrid composite plate

A rectangular (0.2 m �0.05 m) hybrid composite plate (a) made of four-layer T300/976 graphite–epoxy composite and
two outer layers of monolithic PZT G1195N, as shown Fig. 7(a), is considered for further study. The cantilever plate is fixed
at x=0, and free at the other three edges. It is modeled with a 24�8 regular mesh to obtain converged results for free
vibration response. The top and bottom piezoelectric surfaces are treated as actuator and sensor, respectively, which are
collocated in the conventional sense (Fig. 8(a)). In order to illustrate the effect of segmentation of electrodes on vibration
control, the outer electroded surfaces of the piezoelectric layers are divided into one and sixteen segments (Fig. 9),
respectively.

The first six closed-loop natural frequencies fið ¼oi=2pÞ and modal damping ratios of the hybrid composite plate (a) for
CGVF control are presented in Table 2 for one and sixteen electrode segments of the actuator and sensor surfaces. The
passive damping ratio is taken as 0.8 percent for all modes. The gain is taken as G=0.007 and 0.0015 for one and sixteen
segments, respectively. It is observed that even for the low gains, the active modal damping ratio is negative for the third
mode in case of one electrode segment and for the fifth mode in case of sixteen electrode segments. It means positive real
part of the corresponding pole, causing instability in the closed-loop response for the conventionally collocated actuator/
sensor pairs. The instability can be seen in the closed-loop transient responses of tip deflection, w(0.2, 0.025, 0) and control
voltage presented in Fig. 10 for step excitation of 3 N and an impulse excitation of 0.01 N s applied at point A (Fig. 9) of the
hybrid plate with one electrode segment. The responses are obtained using the truncated modal model with first six
modes.
This instability is due to the fact that the active damping matrix Ka is not symmetric due to extension-bending coupling
that makes the actuator/sensor pairs asymmetric in electromechanical sense. Such instability has been reported in
the experimental studies by Akishita et al. [29] and Ghiringhelli and Zanardi [30] using conventionally collocated
actuator/sensor pairs.

The instability in the closed-loop response in CGVF control can be remedied by using an electromechanically symmetric
pairs of actuator and sensor, which is obtained by bonding two piezoelectric layers each to top and bottom of the elastic
substrate, as shown in Fig. 8(b). A pair of symmetrically placed piezoelectric layers is then considered as the actuator/
sensor. The gain is applied on the average of the measured values of potential derivative at the two sensors and the
actuation voltage is applied evenly on the two actuators. This arrangement ensures a symmetric modal active damping
matrix Ka and yields truly collocated actuator sensor-pairs. Table 3 shows the closed-loop modal damping ratios of the
plate with the truly collocated actuator sensor arrangement, which are always positive for all modes for any value of gain,
ensuring the stability of the closed-loop system. Fig. 11 presents the closed-loop responses for the tip-deflection and
actuation voltage under step excitation, of the same plate with truly collocated actuator sensor pair with one electrode
segment which too exhibit the stability of the system. Similar results for the 16 electrode case are presented in Fig. 12,
showing the instability and stability of the conventionally and truly collocated actuator–sensor arrangements, respectively.

The effect of segmentation of electroded piezoelectric surfaces on natural frequencies and modal active damping ratios
is illustrated in Table 3. It is observed that the active modal damping ratios for all flexural modes in the 16 electrode
segment case are larger than those of the one-segment case for the same gain. Also, it is revealed from Figs. 11 and 12 that
the same settling time (0.21 s) of the closed loop response is achieved in the 16-segment case at lesser gains (1.2 percent)
than the one segment case (2 percent). These results show the effectiveness of segmentation of distributed actuators and
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Table 1
Material properties.

Material Y1 (GPa) Y2 (GPa) Y3 (GPa) G23 (GPa) G13 (GPa) G12 (GPa) n23 n13 n12 r(kg m�3)

PZT-G1195N [31] 63.0 63.0 63.0 24.2 24.2 24.2 0.3 0.3 0.3 7600

T300/976 Gr/Ep

[31]

150.0 9.0 9.0 2.5 7.1 7.1 0.3 0.3 0.3 1600

Gr/Ep [3] 132.5 10.8 10.8 3.4 5.7 5.7 0.24 0.24 0.24 1600

Al(A12024-T3)

[3]

73 73 73 27.4 27.4 27.4 0.33 0.33 0.33 2710

s11

(�10�12m2 N�1)

s12

(�10�12m2 N�1)

s13

(�10�12m2 N�1)

s22

(�10�12m2 N�1)

s23

(�10�12m2 N�1)

s33

(�10�12m2 N�1)

s44

(�10�12m2 N�1)

s55

(�10�12m2 N�1)

s66

(�10�12m2 N�1)

PZT-5H [22] 16.5 �4.78 �8.45 16.5 �8.45 20.7 43.5 43.5 42.6 7500

Matrix [22] 294 �88.2 �88.2 294 �88.2 294 764 764 764 1000

d31

(�10�12 mV�1)

d32

(�10�12 mV�1)

d33

(�10�12 mV�1)

d15

(�10�12 mV�1)

d24

(�10�12 mV�1)

e11/e0 e22/e0 e33/e0

PZT-G1195N [31] 254.0 254.0 374.0 584.0 584.0 1728.8 1728.8 1694.9

PZT-5H [22] �274 �274 593 741 741 3130 3130 3400

Matrix [22] 170 170 170

Electrical permittivity of air, e0=8.85�10�12 Fm�1.
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Fig. 5. The centerline deflection of cantilever hybrid angle–ply composite plate under uniform pressure loading and different actuation voltages.

Fig. 6. The effect of velocity feedback control gain on the response of tip of cantilever hybrid angle–ply composite plate.

Fig. 7. Hybrid composite and FML plate configurations. (a) Hybrid composite plate. (b) Hybrid FML plate.

S. Kapuria, M.Y. Yasin / Journal of Sound and Vibration 329 (2010) 3247–32653256
sensors in direct feedback control. The segmentation leads to a MIMO configuration. The peak voltage in the two actuator
segments near the fixed edge (56.9 V) for the multi-segment electrode is higher than that of the one-segment case (36.8 V),
but it is much smaller in the remaining actuator segments.
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Fig. 8. Configurations of smart plates with (a) conventional and (b) truly collocated actuator and sensor layers.

Fig. 9. Hybrid cantilever plate (a) with segmented electrodes.

Table 2

Closed-loop natural frequencies (fi) and modal damping ratios (xi) for plate (a) with conventionally collocated actuator/sensor under CGVF control.

Mode One segment Sixteen segments

fi (Hz) xi (%) fi (Hz) xi (%)

1 40.9473 1.91 41.1600 1.20

2 253.661 1.79 256.280 2.01

3 412.082 �0.44 412.417 0.79

4 713.851 2.98 721.063 4.45

5 720.979 0.82 722.122 �0.32

6 1255.60 0.36 1257.54 1.26

S. Kapuria, M.Y. Yasin / Journal of Sound and Vibration 329 (2010) 3247–3265 3257
The instability in the closed-loop response for direct feedback control due to asymmetric actuator sensor pairs is no
longer an issue for optimal control laws. The effectiveness of LQR and LQG controllers is studied in this section for the
cantilever hybrid plate (a) with single-segment and 16-segment electrodes for conventionally collocated actuator and
sensor layers. The closed-loop natural frequencies and modal damping ratios for LQR control for both single- and multi-
segment electrode cases are presented in Table 4 for first six modes with Qy=100I and R=I. The damping is positive for all
modes, establishing the stability of the system. The plate is excited by an impulse loading of 0.01 N s at point A. The open-
and the closed-loop responses for the deflection and control voltage in LQR control for the single electrode case are plotted
in Fig. 13 for different values of output weighing parameter (Qy=QyI), while keeping the input weighing matrix constant as
unity (R=I). As Qy increases from 20 to 200, the settling time reduces from 0.53 to 0.17 s and the peak voltage increases
from 19.0 to 72.0 V. The effect of sensor noise intensity V and plant noise intensity W on LQG control is illustrated in Fig. 14
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Fig. 10. Tip deflection and control voltage for CGVF control of plate (a) with one segment of conventionally collocated actuator/sensor. (a) Step excitation.

(b) Impulse excitation.

Table 3

Closed-loop natural frequencies (fi) and modal damping ratios (xi) for plate (a) with truly collocated actuator/sensor under CGVF control.

Mode One segment Sixteen segments

Gain=0.01 Gain=0.03 Gain=0.01 Gain=0.03

fi (Hz) xi (%) fi (Hz) xi (%) fi (Hz) xi (%) fi (Hz) xi (%)

1 40.9492 3.99 41.1267 10.40 41.2130 6.12 41.7381 16.70

2 253.961 3.65 256.449 9.38 264.465 16.26 312.594 25.19

3 412.159 0.80 412.159 0.80 412.883 3.18 416.828 7.84

4 712.543 7.13 702.593 20.03 705.037 52.62 722.270 0.81

5 720.924 0.81 720.915 0.80 722.281 0.81 2098.72 100

6 1255.41 0.80 1255.41 0.80 1257.72 10.38 1245.82 29.83
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for the single-segment electrode, with Qy=200 and R=I. As expected, increase in V has the same effect on response as the
decrease in W. The two controllers LQR and LQG are compared in Fig. 15 for the plate with 16 electrode segments with
Qy=100I, R=I, V=0.03 V2 and W= 2.5�10�5(N s)2. The peak control voltage in actuator segments 1, 3, 5 and 7 is 241.0,
122.8, 163.1 and 122.5 V, respectively, for a settling time of 0.141 s in LQR control. For the same settling time, the
corresponding peak voltages for LQG controller reduce to 137.4, 86.0, 69.7 and 62.7 V, respectively. A similar control effect
can be obtained by actuating only six electrode segments (out of 16) near the fixed support, but with higher control
voltages, which is illustrated in Fig. 15. Variations of response settling time and peak voltage with Qy for single- and multi-
segment cases are further compared in Fig. 16 for both LQR and LQG controllers. It confirms the superiority of multiple
segmentation of actuators and sensors over the single-electrode case, yielding faster settling time for the same value of Qy

for both LQR and LQG controllers. This is possible due to higher active damping ratios in all modes in the multi-segment
case for the same value of Qy, as observed in Table 4.
4.3. Control of FML plate integrated with PFRC layers

A square hybrid plate (0.3 m�0.3 m) made of FML of Al and Gr/Ep composite (Fig. 7(b)) and bonded to two outer PFRC
layers is studied in this section. The PFRC is made of PZT-5H fibers and polymer matrix, whose properties are listed in
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Fig. 11. Tip deflection and control voltage for CGVF control of plate (a) with one segment of truly collocated actuator/sensor under (a) step excitation

(b) impulse excitations.

Fig. 12. Tip deflection and control voltage for CGVF control of plate (a) with 16 segments of conventionally and truly collocated actuator/sensor under

step excitation. (a) Conventionally collocated. (b) Truly collocated.

S. Kapuria, M.Y. Yasin / Journal of Sound and Vibration 329 (2010) 3247–3265 3259
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Table 4

Closed-loop natural frequencies (fi) and modal damping ratios xi) for plate (a) under LQR control.

Mode One segment Sixteen segments

fi (Hz) xi (%) fi (Hz) xi (%)

1 41.1428 6.17 41.6891 11.10

2 253.687 1.19 258.941 10.51

3 412.148 1.05 412.514 1.57

4 713.566 1.05 722.377 2.06

5 721.235 0.81 728.902 10.48

6 1255.43 0.80 1258.12 1.92

Fig. 13. Effect of Qy on tip deflection and control voltage for LQR control of plate (a) under impulse excitation.

Fig. 14. Effect of noise intensities V and W on tip deflection and control voltage for LQG control of plate (a) under impulse excitation.
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Table 1. The effective properties of the PFRC for a given fiber volume fraction vf are computed using micromechanics model
described in Section 2.1 The interfaces between the FML laminate and the PFRC layers are grounded. The bottom and the
top electroded surfaces are considered as sensors and actuators, respectively. The plate is modeled with 400 (20�20)
elements. Single-segment electrodes are considered at the PFRC surfaces which are modeled with one electric node. In the
present model of the eleven-layer plate, the numbers of mechanical and electric DOF are 3087 (212

�7) and 886
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Fig. 15. Tip deflection and control voltage for optimal control of plate (a) with 16-segment electrode under impulse excitation.

Fig. 16. Variation of settling and peak voltage with Qy for plate (a).
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(212
�2+4), respectively. But, with the same mesh size, a coupled FE model based on the conventional LWTs (with

constant w) would have 11025 (212
� (12�2+1)) mechanical DOF and 4410 (212

�2�5) electric (nodal) DOF, considering
four sublayers for potential discretization. The one-fourth reduction in the number of DOF in the present model will cause
one-sixteenth reduction in computation time, which is very significant for a dynamic/free vibration analysis. The difference
will increase with the number of layers in the laminate. It establishes the computational efficiency of the present FE model.

The effects of fiber volume fraction vf and fiber orientation a of the PFRC layers on the open loop natural frequencies on

are illustrated in Fig. 17 for a cantilever plate fixed at x=0. While the flexural frequencies o1 and o3 vary significantly with
vf and a, the second mode frequency o2 shows only marginal variation. Active vibration control response is obtained for a
cantilever plate excited by a point load applied at point A and for an all-round simply supported plate excited by a load
applied at the center. The LQG controller with W=0.003 V2, V¼ 2:5� 10�5 N2 s2 and R=I is employed for the optimal
control. The closed-loop response for tip deflection w (0.3, 0.15, 0) of cantilever plate and central deflection w (0.15, 0.15, 0)
of simply supported plate under impulse excitation, and the required control voltages are plotted in Fig. 18 for three values
of piezo-fiber orientation (a=01, 451, 901) for Qy=1000. The cantilever plate is subjected to an impulse excitation of 0.06 N s
and the simply supported plate to an excitation of 0.1 N s. The fiber volume fraction and dielectric ratio of PFRC layers are
taken as vf=0.6 and ep

33=e33 ¼ 20. It is revealed that the participation of higher modes in the response decreases with a.
Fig. 19 depicts the effect a on the response parameters, namely the peak deflection and the peak control voltage for a given
settling time (ts=1 s for cantilever plate and 0.1 s for simply supported plate). The response is obtained for a step excitation
of 10 N for cantilever plate and 100 N for simply supported plate. The value of Qy is adjusted to achieve the given settling
time. For cantilever plate, PFRC with zero fiber angle is clearly the most efficient, and gives minimum peak deflection as
well as control voltage. But the same does not hold well for the square simply supported plate, where the minimum peak
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Fig. 17. Effect of fiber volume fraction and fiber orientation of PFRC on open-loop natural frequencies of cantilever hybrid FML plate (b).

Fig. 18. Deflection and control voltage for FML plate (b) under impulse excitation for different fiber orientations. (a) Cantilever. (b) Simply supported.
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deflection is achieved at a�451 and the minimum control voltage is achieved at a=901. Variations of the response
parameters with vf plotted in Fig. 20 reveal that both peak deflection and peak voltage for a given settling time reduce with
vf for both cantilever and simply supported boundary conditions. The ratio of dielectric constants e33 of piezoelectric fiber
and matrix ðep

33=e
m
33Þ has significant effect on the control authority of the PFRC sensors and actuators. The variations of peak

deflection and peak control voltage with the dielectric ratio are plotted in Fig. 21 for cantilever plate for ts=1 s. These plots
reveal that the control authority of PFRC is significantly enhanced as ep

33=e
m
33 reduces to unity and deteriorates with the

increase in this ratio, as happens in commonly used materials. Equal dielectric constant e33 of both the constituents in PFRC
ensures uniform transverse electric field in both phases, resulting in high effective piezoelectric constants de

ij.
Developments of matrix materials with em

33 of the order of ep
33 would thus greatly enhance the performance of PFRC

actuators and sensors.
5. Conclusions

The active vibration control of hybrid composite and FML plates integrated with monolithic piezoelectric and PFRC
sensors and actuators is studied using an efficient and advanced layerwise plate theory. The theory is able to model the
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Fig. 19. Variation of peak deflection and peak voltage with PFRC fiber orientation for FML plate (b) under step excitation. (a) Cantilever. (b) Simply

supported.

Fig. 20. Variation of peak deflection and peak voltage with PFRC fiber volume fraction for FML plate (b) under step excitation. (a) Cantilever. (b) Simply

supported.
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electromechanical inhomogeneities in the laminate configuration. The FE formulation models the equipotential condition
of electrode segments accurately and at the same time reduces the number of electric DOF significantly using the novel
concept of electric node. The numerical study reveals that:
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Fig. 21. Effect of dielectric ratio on the control response of cantilever hybrid FML plate (b) under step excitation.
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(1)
 Piezoelectric sensors and actuators placed in conventional collocated sense cause instability in the closed-loop
response of hybrid plates in direct feedback control. A truly collocated actuator–sensor arrangement to remove the
instability is illustrated.
(2)
 Multiple segmentation of electrodes leads to faster attenuation of the closed-loop response for the same gain in direct
feedback control and for the same output weighing parameters in optimal control.
(3)
 The peak control voltage to achieve the same settling time is smaller in LQG than LQR control for both single- and
multi-segment electrodes.
(4)
 The fiber orientation of PFRC imparts directional actuation and sensing, which can be used efficiently to optimize the
control performance of smart plates. The optimum fiber orientation depends on the boundary conditions and the
optimization objective (minimize peak deflection or peak control voltage).
(5)
 Both peak deflection and peak control voltage can be reduced by increasing the volume fraction of piezoelectric fibers
in PFRC.
(6)
 The effective piezoelectric constants and, therefore, the actuation/sensing authority of PFRC materials are maximum
when the dielectric ratio is unity. Development of suitable matrix medium with dielectric constant em

33 of the order of
ep

33 would greatly enhance the performance of PFRC sensors and actuators.
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